摘要:接收鐵路油槽車都存在如何高效的收盡槽車底油的問題,若按每個槽車殘留底油5kg計算,按去年一年收油車數(shù)6741車,一年將損失33.7噸油品。本案采取配備掃槽泵收油的方法,但是在運轉過程中,因無法控制泵機運行轉速,時常會出現(xiàn)強烈震動,嚴重損害泵機運行并且影響收油的效果。為此,本文將針對這一問題,提出解決方案,詳細的介紹了運用的方法和理論。iad壓力變送器_差壓變送器_液位變送器_溫度變送器
一、泵機配備變頻的原因
在用擺動轉子泵掃槽車剩余底油時,由于掃艙軟管口徑較小,在全液流動時,易產(chǎn)生泵進口真空過高,導致泵振動、噪聲增大的問題。采用擺動轉子泵掃艙是進行氣液混輸,因此必須考慮泵的汽蝕性能,在槽車底油多時,掃艙軟管吸入飽滿,泵進口真空度高,當真空超過泵汽蝕點后,泵的振動、噪聲將增大。因此擺動轉子泵掃艙時需隨時調節(jié)電機的運行速度,以便控制泵進口的真空度 ,達到泵平穩(wěn)工作,提高效率,同時減少噪音的效果.本案例采取配置變頻器及三暢儀表壓力變送器,利用PID 控制器進行調節(jié)。
二、PID控制器原理
PID控制器(Proportion Integration Differentiation比例-積分-微分控制器 )由比例控制單元P、積分控制單元I和微分控制單元D組成,并分別通過參數(shù)K,Ti,Td的設定把收集到的數(shù)據(jù)和預設的經(jīng)驗值進行比較,經(jīng)過將比較的結果計算產(chǎn)生新的值作為輸入信號。這個新的輸入值的目的是可以讓系統(tǒng)穩(wěn)定在設定參考值的一定范圍內(nèi),這樣可以使系統(tǒng)更加準確,更加穩(wěn)定。PID控制系統(tǒng)它的特點是原理簡單,使用方便、適用性強等特點。
1.PID具體含義。比例控制單元P的特點是快速反應,但是對具有自平衡性的被控對象存在靜差。增加積分調節(jié)單元I后,對消除靜差起到一定的積極作用,但是卻降低了系統(tǒng)的響應速度。為了解決這一問題,必須要在偏差出現(xiàn)前,對偏差量做出反應,也要對偏差的變化趨勢做出判斷并加以控制,便增加微分控制單元D。綜上所述,為達到控制效果,要選擇PID控制器。PID是以比例、積分、微分函數(shù)的算法而命名的,這三個參數(shù)是取得高性能算法的關鍵。這三種算法是:
1.1比例控制單元:按比例反映系統(tǒng)的偏差。加大比例系數(shù),可以減少系統(tǒng)的穩(wěn)態(tài)誤差,提高系統(tǒng)的控制精度,加快響應速度。但是過大的比例系數(shù)會造成系統(tǒng)的穩(wěn)定性下降,甚至系統(tǒng)的不穩(wěn)定。
1.2積分控制單元:主要使系統(tǒng)消除穩(wěn)態(tài)誤差,提高系統(tǒng)的穩(wěn)態(tài)性能。積分作用的強弱取決于積分時間常數(shù)T,T越小,積分作用越強,反之,作用越弱。積分作用使系統(tǒng)的穩(wěn)定性下降,動態(tài)響應變慢.因此,積分環(huán)節(jié)通常與其他兩種調節(jié)器結合使用。
1.3微分控制單元:微分作用反映偏差信號的變化趨勢,具有預見性。適當?shù)奈⒎终{節(jié),能改善系統(tǒng)的動態(tài)性能,減少調節(jié)時間.但過強的微分調節(jié),對系統(tǒng)干擾不利。
2.三暢儀表的PID參數(shù)設定。過程PID用于壓力過程變量的控制。比例環(huán)節(jié)產(chǎn)生與偏差成比例變化的控制作用來減少偏差;積分環(huán)節(jié)主要用于消除靜差,積分時間越大,積分的作用越弱,積分時間越短,積分作用越強;微分環(huán)節(jié)通過偏差的變化趨勢預測偏差信號的變化,并在偏差變大之前產(chǎn)生抑制變差變化的控制信號,從而加快控制的響應速度。
PID參數(shù)調整原則:
比例參數(shù)的調節(jié)。先將比例增益從較小值如(0.20)增加直至反饋信號開始震蕩,然后減少40-60%使反饋信號穩(wěn)定,比例系數(shù)P設置較大值會導致系統(tǒng)不穩(wěn)定,頻繁震蕩;P值設置較小,又會使系統(tǒng)敏感性下降。恰當?shù)脑O置比例系數(shù)會使系統(tǒng)有足夠的靈敏度但又不會反應過于靈敏,一定時間的延遲要通過對積分時間設置來進行調節(jié)積分、微分參數(shù)的調節(jié)。將積分時間從較大值(如20.00s)直至反饋信號開始震蕩,然后增加10-50%使反饋信號穩(wěn)定。如果通過比例、積分參數(shù)的調節(jié)還是收不到理想的控制要求,而且系統(tǒng)對超調和動態(tài)誤差要求較高,就需要增加微分單元(有的系統(tǒng)要求時間滯后,才需要附加這個參數(shù)),可以通過調節(jié)微分時間參數(shù),初次調試時要從小到大,逐步調節(jié)的方法,直到系統(tǒng)穩(wěn)定。
3.本案采取的算法本案例采取PID增量式算法 ,具體算法如下:
離散化公式:
其中:u(k)為第k次采樣時刻控制器的輸出;e(k)、ec(k)分別為系統(tǒng)的偏差、偏差變化量;kp、ki、kd分別為比例系數(shù)、積分系數(shù)、微分系。PID控制通過對這三個參數(shù)的整定,從而獲得良好的系統(tǒng)控制性能。增量型控制,即輸出量是兩個采樣周期,控制器的輸出增量△u(k)由下式可得:
其中 T1為積分時間常數(shù);TD為微分時間常數(shù);T為采樣周期。上公式稱為PID增量是控制算式,增量式算式具有下速優(yōu)點 :
(1)計算機只輸出控制增量,即執(zhí)行機構位置的變化部分,誤動作影響小。
(2)在進行手動和自動切換時 ,控制量沖擊小,能較平滑的過度。
(3)增量算法中增量△u(k)只受#近的第k次的輸出數(shù)值,這樣運算就可以通過加權算法來處理,可以得到理想的控制效果,由于沒有累加,消除了當前偏差存在時發(fā)生飽和的危險。
比例項與積分項的符號有以下關系:
在增量式算法中,如果被控量偏離預設值,則比例項和積分項的符號相同,而當被控量向設定值靠近時,則這兩項的符號反相。但如果被控量與設定值相差較遠,而僅在剛開始向設定值靠近時,由于比例項和積分項反向,將會延緩控制過程,增加控制時間。為了提高控制效率,本案設定一個偏差范圍△l,當偏差△u(k)< △l時,就按正常規(guī)律調節(jié),而當△u(k)>= △l時,則取消判斷比例項作用為正或為負,使它向有利于接近設定值的方向調整,使其符號與積分項一致?梢源蟠蠹涌炜刂频膭討B(tài)過程。
三、現(xiàn)場變頻器工作原理
變頻調速的基本控制方式,在電動機調速時,一個重要的因素是希望保持電機每極磁通量¢m為額定值¢m太小,電機的鐵心沒有得到充分的利用,浪費較大;如果增加¢m,會導致點擊的繞組過熱而損毀電機,為此,通過三相異步電機定子每相電動勢的有效值公式來看;
式中Eg為感應電動勢; f1為定子頻率; N1為定子每相繞組串聯(lián)匝數(shù); KN1為基波繞組系數(shù);
(1)基頻(額定頻率)以下調速:通過公式可以看出,要保持¢m不變,當頻率f1從額定值向下調節(jié)時,必須同時降低Eg,從而使得Eg/ f1=常值,屬于“恒轉矩調速”的性質。
(2)基頻以上調速:頻率可以從額定頻率往上增高,但那時電壓卻不能增加的比額定電壓還高,#多只能保持在額定電壓下工作,通過公式可以看出¢m與f1 成反比的降低,屬于“恒功率調速”的性質。
本案中系統(tǒng)采用一臺變頻器控制一臺掃槽泵運行方式,安裝在掃槽泵進口真空壓力變送器,用于檢測掃槽泵進口真空壓力,將壓力轉化為4~20mA的電流信號,提供變頻器,經(jīng)過變頻器模擬量輸入,變頻器根據(jù)給定的真空壓力設定值與實際的檢測值進行PID運算,變頻器調節(jié)掃槽泵電機的供電電壓和頻率。變頻器是掃槽泵電機的控制設備,能按照真空壓力恒定需要將0~50HZ的頻率信號供給掃槽泵電機,調整其轉速。本系統(tǒng)采用PID控制的應用宏,進行閉環(huán)控制,采用三暢儀表壓力變送器,變頻器作為中心控制裝置,實現(xiàn)所需功能。
在泵進口真空度較低時,提高轉速,增大泵的排量;泵進口較高時,降低轉速,減少排量,從而達到控制泵進口真空的目的。避免在泵進口真空較高時,泵發(fā)生汽蝕,產(chǎn)生振動、噪聲。避免在未安裝變頻器的情況下,泵進口真空較低時,掃艙吸入速度慢,需要人工調節(jié)提高泵轉速,這樣較繁瑣操作。
四、結語
在現(xiàn)場實際應用,變頻器采用 PID 調節(jié),可以減輕操作的繁瑣性,使泵工作更加平穩(wěn),提高了泵的掃艙效果,是一種較好的掃艙作業(yè)控制方式。
iad壓力變送器_差壓變送器_液位變送器_溫度變送器